(New page: assume that <math>y[n] = x[n-10]</math> unit impulse response <math>h[n] = \delta[n]</math> <math>y[n] = h[n]</math> then we can can a unit impulse response as <math>h[n]= \delta[n-...) |
|||
Line 12: | Line 12: | ||
<math>h[n]= \delta[n-10]</math> | <math>h[n]= \delta[n-10]</math> | ||
+ | |||
+ | for the frequency response, | ||
+ | |||
+ | <math>F(z) = \sum_{m=-\infty}^{\infty} h[m]e^{jmw}</math> | ||
+ | |||
+ | <math>F(z) = \sum_{m=-\infty}^\infty \delta[m-10]e^{jmw}</math> |
Revision as of 13:05, 26 September 2008
assume that
$ y[n] = x[n-10] $
unit impulse response
$ h[n] = \delta[n] $
$ y[n] = h[n] $
then we can can a unit impulse response as
$ h[n]= \delta[n-10] $
for the frequency response,
$ F(z) = \sum_{m=-\infty}^{\infty} h[m]e^{jmw} $
$ F(z) = \sum_{m=-\infty}^\infty \delta[m-10]e^{jmw} $