Line 4: Line 4:
  
 
P[min{ E(1,λ) , E(1,μ) } > t] = P[E(1,λ) > t] . P[E(1,μ) } > t]
 
P[min{ E(1,λ) , E(1,μ) } > t] = P[E(1,λ) > t] . P[E(1,μ) } > t]
 +
 
        = exp (-λt) . exp (-μt)
 
        = exp (-λt) . exp (-μt)
 +
 
        = exp {-(λ + μ)t}
 
        = exp {-(λ + μ)t}
  

Revision as of 17:46, 6 October 2008

From the memoryless property of Exponential Distribution function:

Suppose E(1,λ) and E(1,μ) are independent, then;

P[min{ E(1,λ) , E(1,μ) } > t] = P[E(1,λ) > t] . P[E(1,μ) } > t]

= exp (-λt) . exp (-μt)

= exp {-(λ + μ)t}

which shows that minimum of E1,λ and E1,μ is exponentially distributed.

So,

E(1, λ1+ λ2+ λ3+……. λn) = min { E(1,λ1), E(1,λ2), E(1,λ3), ……….., E(1,λn) }

Here, if we put λ = 1, then;

E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }'

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman