Line 19: | Line 19: | ||
From third information, we can find <math>a_0\,</math>: | From third information, we can find <math>a_0\,</math>: | ||
− | <math>a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4} | + | <math>a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4}x2 = \frac{1}{2}</math> |
Revision as of 09:59, 26 September 2008
Informations
1. $ N = 2\, $
2. $ a_k = 0\, $ for all |k|>1
3. $ \sum_{n=0}^{3}x[n]=2 $
4. $ \sum_{n=0}^{3}(-1)^nx[n]=5 $
Inspections
From first information, we can directly subtitute N into:
$ x[n]=\sum_{n=0}^{3}a_ke^{jk(2\pi/2)n}\, $
$ x[n]=\sum_{n=0}^{3}a_ke^{jk\pi n}\, $
From third information, we can find $ a_0\, $:
$ a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4}x2 = \frac{1}{2} $