(New page: =Obtain the input impulse response h[n] and the system function H(z) of your system= Defining a DT LTI: <math>y[n] = x[n+5] + x[n-3]\,</math><br> So, we have the unit impulse response: <ma...)
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=Obtain the input impulse response h[n] and the system function H(z) of your system=
 
=Obtain the input impulse response h[n] and the system function H(z) of your system=
 
Defining a DT LTI:
 
Defining a DT LTI:
<math>y[n] = x[n+5] + x[n-3]\,</math><br>
+
<math>y[n] = x[n+5] + x[n-3]\,</math>
 +
 
 
So, we have the unit impulse response:
 
So, we have the unit impulse response:
 +
 
<math>h[n] = \delta[n-5] + \delta[n-3]\,</math>
 
<math>h[n] = \delta[n-5] + \delta[n-3]\,</math>
  
 
Then we find the frequency response:
 
Then we find the frequency response:
 +
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math>
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math>
  
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} \,</math>
+
find m value to make the value inside the bracket zero
 +
 
 +
m = -5 for the first set and 3 for the second set
 +
 
 +
<math>F(z) = e^{-5j\omega} + e^{3j\omega} \,</math>
 +
 
 +
 
 +
 
 +
=Compute the response of your system to the signal you defined in Question 2 using H(z) and the Fourier series coefficients of your signal=
 +
 
 +
Signal defined in Question 1:
 +
 
 +
<math>X[n] = 6\cos(3 \pi n + \pi)\,</math>
 +
 
 +
<math>x[n] = \sum^{2}_{k = -1} a_k e^{jk\frac{\pi}{2} n}\,</math>
 +
 
 +
<math>X[0] = -6 \,</math>
 +
 
 +
<math>X[1] = 6 \,</math>
 +
 
 +
<math>X[2] = -6 \,</math>
 +
 
 +
<math>X[-1] = 6 \,</math>
 +
 
 +
The pattern of k can be seen since it forms a wave.
 +
 
 +
 
 +
<math>y[n] = \sum^{2}_{k = -1} a_k F(z) e^{jk\frac{\pi}{2} n}\,</math>
 +
 
 +
<math>y[n] = \sum^{2}_{k = -1} a_k (e^{-5j\omega} + e^{3j\omega}) e^{jk\frac{\pi}{2} n}\,</math>
  
=Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal=
+
<math>y[n] = 6 (e^{-5j\omega} + e^{3j\omega}) e^{j(-1)\frac{\pi}{2} n} + (-6) (e^{-5j\omega} + e^{3j\omega}) e^{0}\,</math>

Latest revision as of 08:04, 26 September 2008

Obtain the input impulse response h[n] and the system function H(z) of your system

Defining a DT LTI: $ y[n] = x[n+5] + x[n-3]\, $

So, we have the unit impulse response:

$ h[n] = \delta[n-5] + \delta[n-3]\, $

Then we find the frequency response:

$ F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\, $

find m value to make the value inside the bracket zero

m = -5 for the first set and 3 for the second set

$ F(z) = e^{-5j\omega} + e^{3j\omega} \, $


Compute the response of your system to the signal you defined in Question 2 using H(z) and the Fourier series coefficients of your signal

Signal defined in Question 1:

$ X[n] = 6\cos(3 \pi n + \pi)\, $

$ x[n] = \sum^{2}_{k = -1} a_k e^{jk\frac{\pi}{2} n}\, $

$ X[0] = -6 \, $

$ X[1] = 6 \, $

$ X[2] = -6 \, $

$ X[-1] = 6 \, $

The pattern of k can be seen since it forms a wave.


$ y[n] = \sum^{2}_{k = -1} a_k F(z) e^{jk\frac{\pi}{2} n}\, $

$ y[n] = \sum^{2}_{k = -1} a_k (e^{-5j\omega} + e^{3j\omega}) e^{jk\frac{\pi}{2} n}\, $

$ y[n] = 6 (e^{-5j\omega} + e^{3j\omega}) e^{j(-1)\frac{\pi}{2} n} + (-6) (e^{-5j\omega} + e^{3j\omega}) e^{0}\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett