Line 18: | Line 18: | ||
=Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal= | =Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal= | ||
+ | |||
+ | Signal defined in Question 1: | ||
+ | <math>x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\,</math><br> | ||
+ | <br> | ||
+ | <math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math> | ||
+ | |||
+ | <math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math> | ||
+ | |||
+ | From Question 1: | ||
+ | <math>x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\,</math><br> | ||
+ | With this expression we can conclude:<br> | ||
+ | <math>a_1 = 3\,</math><br> | ||
+ | <math>a_{-1} = 3\,</math><br> | ||
+ | <math>a_2 = 4\,</math><br> | ||
+ | <math>a_{-2} = -4\,</math><br> |
Revision as of 07:49, 26 September 2008
Obtain the input impulse response h[n] and the system function H(z) of your system
Defining a DT LTI:
$ y[n] = x[n+5] + x[n-3]\, $
So, we have the unit impulse response:
$ h[n] = \delta[n-5] + \delta[n-3]\, $
Then we find the frequency response:
$ F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\, $
find m value to make the value inside the bracket zero
m = -5 for the first set and 3 for the second set
$ F(z) = e^{-5j\omega} + e^{3j\omega} \, $
Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal
Signal defined in Question 1:
$ x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\, $
$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $
$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $
From Question 1:
$ x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\, $
With this expression we can conclude:
$ a_1 = 3\, $
$ a_{-1} = 3\, $
$ a_2 = 4\, $
$ a_{-2} = -4\, $