(New page: ==Guess Signal== The signal is DT periodic with period of 4 :<math>x[1]=0 \,</math> :<math>\sum_{n=2}^{10} x[n]= 8</math> :<math>\sum_{n=3}^7 x[n]e^{-j\pi n}=2</math> x[n] has min power...) |
(→Solution) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
The signal is DT periodic with period of 4 | The signal is DT periodic with period of 4 | ||
− | + | ||
:<math>\sum_{n=2}^{10} x[n]= 8</math> | :<math>\sum_{n=2}^{10} x[n]= 8</math> | ||
− | :<math>\sum_{n= | + | :<math>\sum_{n=4}^7 x[n]e^{-j\pi n}=2</math> |
x[n] has min power among all signals that satisfy the above. | x[n] has min power among all signals that satisfy the above. | ||
Line 11: | Line 11: | ||
:<math>a0=\dfrac{1}{2T}\sum_{n=2}^{10} x[n]</math> | :<math>a0=\dfrac{1}{2T}\sum_{n=2}^{10} x[n]</math> | ||
:<math>a0=1/8*8=1 \,</math> | :<math>a0=1/8*8=1 \,</math> | ||
− | :<math>\sum_{n= | + | :<math>\sum_{n=4}^7 x[n]e^{-j\pi n}=2</math> looks like <math>ak=\dfrac{1}{N}\sum_{n=0}^{N-1} x[n]e^{-jk2\pi n /N}</math> |
+ | |||
+ | N=4,so <math>ak=\dfrac{1}{4}\sum_{n=0}^{4-1} x[n]e^{-jk2\pi n /4}</math> | ||
+ | for the exponent to be -j2\pi n k/4 has to equal 2, | ||
+ | :<math>a2=\dfrac{1}{4}\sum_{n=0}^{3} x[n]e^{-j\pi n }</math> | ||
+ | :<math>\sum_{n=0}^{3} x[n]e^{-j\pi n }=\sum_{n=4}^7 x[n]e^{-j\pi n}=2</math> | ||
+ | :<math>a2=1/4*2=1/2 \,</math> | ||
+ | now we know <math>x[n]= 1 + a1e^{-jn\pi/2}+\dfrac{1}{2}e^{-jn\pi/2}+a3e^{-j3n\pi/2}</math> | ||
+ | |||
+ | Since the power is minimum all the other ak values are zero. | ||
− | + | so, <math>x[n]= 1 + \dfrac{1}{2}e^{-j\pi n}=1+\dfrac{1}{2}(-1)^{n} | |
− | + | ||
− | + |
Latest revision as of 06:09, 26 September 2008
Guess Signal
The signal is DT periodic with period of 4
- $ \sum_{n=2}^{10} x[n]= 8 $
- $ \sum_{n=4}^7 x[n]e^{-j\pi n}=2 $
x[n] has min power among all signals that satisfy the above.
Solution
- $ a0=\dfrac{1}{2T}\sum_{n=2}^{10} x[n] $
- $ a0=1/8*8=1 \, $
- $ \sum_{n=4}^7 x[n]e^{-j\pi n}=2 $ looks like $ ak=\dfrac{1}{N}\sum_{n=0}^{N-1} x[n]e^{-jk2\pi n /N} $
N=4,so $ ak=\dfrac{1}{4}\sum_{n=0}^{4-1} x[n]e^{-jk2\pi n /4} $ for the exponent to be -j2\pi n k/4 has to equal 2,
- $ a2=\dfrac{1}{4}\sum_{n=0}^{3} x[n]e^{-j\pi n } $
- $ \sum_{n=0}^{3} x[n]e^{-j\pi n }=\sum_{n=4}^7 x[n]e^{-j\pi n}=2 $
- $ a2=1/4*2=1/2 \, $
now we know $ x[n]= 1 + a1e^{-jn\pi/2}+\dfrac{1}{2}e^{-jn\pi/2}+a3e^{-j3n\pi/2} $
Since the power is minimum all the other ak values are zero.
so, $ x[n]= 1 + \dfrac{1}{2}e^{-j\pi n}=1+\dfrac{1}{2}(-1)^{n} $