(New page: ==Guess Signal== The signal is DT periodic with period of 4 :<math>x[1]=0 \,</math> :<math>\sum_{n=2}^{10} x[n]= 8</math> :<math>\sum_{n=3}^7 x[n]e^{-j\pi n}=2</math> x[n] has min power...)
 
Line 2: Line 2:
 
The signal is DT periodic with period of 4  
 
The signal is DT periodic with period of 4  
  
:<math>x[1]=0 \,</math>
+
 
 
:<math>\sum_{n=2}^{10} x[n]= 8</math>
 
:<math>\sum_{n=2}^{10} x[n]= 8</math>
:<math>\sum_{n=3}^7 x[n]e^{-j\pi n}=2</math>
+
:<math>\sum_{n=4}^7 x[n]e^{-j\pi n}=2</math>
  
 
x[n] has min power among all signals that satisfy the above.
 
x[n] has min power among all signals that satisfy the above.
Line 11: Line 11:
 
:<math>a0=\dfrac{1}{2T}\sum_{n=2}^{10} x[n]</math>
 
:<math>a0=\dfrac{1}{2T}\sum_{n=2}^{10} x[n]</math>
 
:<math>a0=1/8*8=1 \,</math>
 
:<math>a0=1/8*8=1 \,</math>
:<math>\sum_{n=5}^7 x[n]e^{-j\pi n}=2</math> looks like <math>ak=\dfrac{1}{N}\sum_{n=0}^{N-1} x[n]e^{-jk2\pi n /N}</math>
+
:<math>\sum_{n=4}^7 x[n]e^{-j\pi n}=2</math> looks like <math>ak=\dfrac{1}{N}\sum_{n=0}^{N-1} x[n]e^{-jk2\pi n /N}</math>
  
N=4,so <math>ak=\dfrac{1}{4}\sum_{n=1}^{4-1} x[n]e^{-jk2\pi n /4}</math>
+
N=4,so <math>ak=\dfrac{1}{4}\sum_{n=0}^{4-1} x[n]e^{-jk2\pi n /4}</math>
for the exponent to be -j\pi n k has to equal 2,  
+
for the exponent to be -j2\pi n k/4 has to equal 2,  
:<math>a2=\dfrac{1}{4}\sum_{n=1}^{3} x[n]e^{-j\pi n }</math>
+
:<math>a2=\dfrac{1}{4}\sum_{n=0}^{3} x[n]e^{-j\pi n }</math>
 +
:<math>\sum_{n=0}^{3} x[n]e^{-j\pi n }=\sum_{n=4}^7 x[n]e^{-j\pi n}=2</math>
 +
:<math>a2=1/4*2=1/2 \,</math>
 +
now we know <math>x[n]= 1 + a1e^{-j\pi/2}+\dfrac{1}{2}e^{-j\pi/2}+a3e^{-j\pi/2}</math>
 +
Since the power is minimum all the other ak values are zero.
 +
so x[n]= 1 + \dfrac{1}{2}e^{-j\pi/2}

Revision as of 06:05, 26 September 2008

Guess Signal

The signal is DT periodic with period of 4


$ \sum_{n=2}^{10} x[n]= 8 $
$ \sum_{n=4}^7 x[n]e^{-j\pi n}=2 $

x[n] has min power among all signals that satisfy the above.

Solution

$ a0=\dfrac{1}{2T}\sum_{n=2}^{10} x[n] $
$ a0=1/8*8=1 \, $
$ \sum_{n=4}^7 x[n]e^{-j\pi n}=2 $ looks like $ ak=\dfrac{1}{N}\sum_{n=0}^{N-1} x[n]e^{-jk2\pi n /N} $

N=4,so $ ak=\dfrac{1}{4}\sum_{n=0}^{4-1} x[n]e^{-jk2\pi n /4} $ for the exponent to be -j2\pi n k/4 has to equal 2,

$ a2=\dfrac{1}{4}\sum_{n=0}^{3} x[n]e^{-j\pi n } $
$ \sum_{n=0}^{3} x[n]e^{-j\pi n }=\sum_{n=4}^7 x[n]e^{-j\pi n}=2 $
$ a2=1/4*2=1/2 \, $

now we know $ x[n]= 1 + a1e^{-j\pi/2}+\dfrac{1}{2}e^{-j\pi/2}+a3e^{-j\pi/2} $ Since the power is minimum all the other ak values are zero. so x[n]= 1 + \dfrac{1}{2}e^{-j\pi/2}

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison