(New page: <math>x[n] = 2 + cos(\omega_0 n) + 4sin(\omega_0 n + \frac{\pi}{2})</math> where <math>\omega_0 = \frac{2\pi}{N}</math>. <math>h[n] = x[n] * \delta[n] = </math>)
 
Line 3: Line 3:
 
where <math>\omega_0 = \frac{2\pi}{N}</math>.
 
where <math>\omega_0 = \frac{2\pi}{N}</math>.
  
<math>h[n] = x[n] * \delta[n] = </math>
+
<math>h[n] = x[n] * \delta[n] = \sum_{k=-\infty}^\infty x[k]\delta[n-k]</math>
 +
 
 +
<math>h[n] = \bigg\{ \frac{x[n], when  k = n}{0,    else}</math>

Revision as of 04:16, 26 September 2008

$ x[n] = 2 + cos(\omega_0 n) + 4sin(\omega_0 n + \frac{\pi}{2}) $

where $ \omega_0 = \frac{2\pi}{N} $.

$ h[n] = x[n] * \delta[n] = \sum_{k=-\infty}^\infty x[k]\delta[n-k] $

$ h[n] = \bigg\{ \frac{x[n], when k = n}{0, else} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood