(Finding x(t) by using given information)
(Finding x(t) by using given information)
Line 21: Line 21:
 
<math> \sum^{2}_{-1} |a_k|^2 = 200 \,</math>
 
<math> \sum^{2}_{-1} |a_k|^2 = 200 \,</math>
  
<math> |a_(-1)|^2 + |a_1|^2 + |a_0|^2 + |a_2|^2 = 200 \,</math>
+
<math> |a_ -1|^2 + |a_1|^2 + |a_0|^2 + |a_2|^2 = 200 \,</math>
  
 
Then <math> a_0 = a_2 = 0. \,</math>
 
Then <math> a_0 = a_2 = 0. \,</math>
  
 
<math> x[n] = \sum^{2}_{-1} a_k e^{j\frac{2\pi}{4}kn}\,</math>
 
<math> x[n] = \sum^{2}_{-1} a_k e^{j\frac{2\pi}{4}kn}\,</math>

Revision as of 18:09, 25 September 2008

Information of x(t)

$ N = 4 $

$ a_5 = 10 $

x(t) is a real and even signal.

$ \frac{1}{4}\sum^{3}_{0} |x[n]|^2 = 200\, $


Finding x(t) by using given information

$ a_1 = a_5 = 10\, $

x(t) is a even siganl,so $ a_-1 = 10\, $

Using parseval's relation

$ \sum^{2}_{-1} |a_k|^2 = 200 \, $

$ |a_ -1|^2 + |a_1|^2 + |a_0|^2 + |a_2|^2 = 200 \, $

Then $ a_0 = a_2 = 0. \, $

$ x[n] = \sum^{2}_{-1} a_k e^{j\frac{2\pi}{4}kn}\, $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch