(→Unit Impulse) |
(→Repsonse of the CT system) |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
== Unit Impulse == | == Unit Impulse == | ||
<math> h(t) = u(t-1) \,</math><br> | <math> h(t) = u(t-1) \,</math><br> | ||
+ | |||
<math> H(s) = \int^{\infty}_{-\infty} u(t-1)e^{-jw_0 t} dt\,</math><br> | <math> H(s) = \int^{\infty}_{-\infty} u(t-1)e^{-jw_0 t} dt\,</math><br> | ||
+ | |||
<math> H(s) = \int^{\infty}_{1}e^{-jw_0 t} dt\,</math><br> | <math> H(s) = \int^{\infty}_{1}e^{-jw_0 t} dt\,</math><br> | ||
− | <math> H(s) = \frac{1}{jw_0} | + | |
+ | <math> H(s) = \frac{1}{jw_0}</math><br> | ||
+ | |||
+ | |||
+ | == Repsonse of the CT system == | ||
+ | |||
+ | <math> x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\,</math><br> | ||
+ | |||
+ | <math> y(t) = H(s)x(t)\,</math><br> | ||
+ | |||
+ | <math> y(t) = \frac{1}{j4}e^{\frac{2j2\pi t}{6}} - \frac{1}{j4}e^{\frac{-2j2\pi t}{6}} - \frac{2}{5}e^{\frac{2j5\pi t}{6}} -\frac{2}{5}e^{\frac{-2j5\pi t}{6}}</math> |
Latest revision as of 17:48, 25 September 2008
Unit Impulse
$ h(t) = u(t-1) \, $
$ H(s) = \int^{\infty}_{-\infty} u(t-1)e^{-jw_0 t} dt\, $
$ H(s) = \int^{\infty}_{1}e^{-jw_0 t} dt\, $
$ H(s) = \frac{1}{jw_0} $
Repsonse of the CT system
$ x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $
$ y(t) = H(s)x(t)\, $
$ y(t) = \frac{1}{j4}e^{\frac{2j2\pi t}{6}} - \frac{1}{j4}e^{\frac{-2j2\pi t}{6}} - \frac{2}{5}e^{\frac{2j5\pi t}{6}} -\frac{2}{5}e^{\frac{-2j5\pi t}{6}} $