Line 4: Line 4:
  
 
<math>a_k = \frac{1}{N}\sum_{n=N} x[n]e^{-jkw_0n}</math>
 
<math>a_k = \frac{1}{N}\sum_{n=N} x[n]e^{-jkw_0n}</math>
 +
 +
assume that
 +
 +
x[0] = 0
 +
 +
x[1] = 2
 +
 +
x[2] = 0
 +
 +
x[3] = 2
 +
 +
x[4] = 0
 +
 +
.
 +
 +
.
 +
 +
.
 +
 +
.
 +
 +
 +
N = 4
 +
 +
let's solve for coefficients
 +
 +
<math>w_0 = \frac{2\pi}{4}</math>
 +
 +
<math>a_0 = \frac{1}{4}\sum_{n=0}^{3} x[n]e^{-j0\pi n}
 +
</math>

Revision as of 17:46, 25 September 2008

Discrete time Fourier series

$ x[n] = \sum_{k=N} a_ke^{-jkw_0n} $

$ a_k = \frac{1}{N}\sum_{n=N} x[n]e^{-jkw_0n} $

assume that

x[0] = 0

x[1] = 2

x[2] = 0

x[3] = 2

x[4] = 0

.

.

.

.


N = 4

let's solve for coefficients

$ w_0 = \frac{2\pi}{4} $

$ a_0 = \frac{1}{4}\sum_{n=0}^{3} x[n]e^{-j0\pi n} $

Alumni Liaison

EISL lab graduate

Mu Qiao