(New page: == CT Fourier Series == Input is <math>(1 + j)cos(\frac{\pi}{2}t + \pi)sin(\frac{\pi}{4}t)</math>) |
(→CT Fourier Series) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== CT Fourier Series == | == CT Fourier Series == | ||
− | + | If input is <math>(1 + j)cos(\frac{\pi}{2}t + \pi)sin(\frac{\pi}{4}t)</math> | |
+ | |||
+ | |||
+ | <math>= (1 + j)(\frac {e^{j \frac{\pi}{2}t + \pi j} + e^{-j \frac{\pi}{2}t - \pi j}}{2})(\frac{e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}}{2j})</math> | ||
+ | |||
+ | <math>= \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}e^{\pi j} + e^{-j \frac{\pi}{2}t}e^{ \pi j})(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t})</math> | ||
+ | |||
+ | <math>= \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}(1) + e^{-j \frac{\pi}{2}t}(-1))(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t})</math> | ||
+ | |||
+ | <math>= \frac{1 + j}{4j}(e^{j \frac{3 \pi}{4}t} - e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t} + e^{-j \frac{3 \pi}{4}t})</math> |
Latest revision as of 08:55, 26 September 2008
CT Fourier Series
If input is $ (1 + j)cos(\frac{\pi}{2}t + \pi)sin(\frac{\pi}{4}t) $
$ = (1 + j)(\frac {e^{j \frac{\pi}{2}t + \pi j} + e^{-j \frac{\pi}{2}t - \pi j}}{2})(\frac{e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}}{2j}) $
$ = \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}e^{\pi j} + e^{-j \frac{\pi}{2}t}e^{ \pi j})(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}) $
$ = \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}(1) + e^{-j \frac{\pi}{2}t}(-1))(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}) $
$ = \frac{1 + j}{4j}(e^{j \frac{3 \pi}{4}t} - e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t} + e^{-j \frac{3 \pi}{4}t}) $