Line 1: Line 1:
Given the following LTI system
+
Given the following LTI DT system
  
<math>\,s[t]=e^{\pi}x[t]\,</math>
+
<math>\,s[t]=x[t]+x[t-1]\,</math>
  
  
Line 11: Line 11:
 
The unit impulse response is simply (plug a <math>\,\delta[n]\,</math> into the system)
 
The unit impulse response is simply (plug a <math>\,\delta[n]\,</math> into the system)
  
<math>\,h[n]=e^{\pi}\delta[n]\,</math>
+
<math>\,h[n]=\delta[n]+\delta[n-1]\,</math>
 +
 
 +
 
 +
The system function can be found using the following formula (for LTI systems)
 +
 
 +
<math>\,H(z)=\sum_{m=-\infty}^{\infty}h[m]z^{-m}\,</math>
  
  
 
== Part B ==
 
== Part B ==

Revision as of 17:13, 25 September 2008

Given the following LTI DT system

$ \,s[t]=x[t]+x[t-1]\, $


Part A

Find the system's unit impulse response $ \,h[n]\, $ and system function $ \,H(z)\, $.


The unit impulse response is simply (plug a $ \,\delta[n]\, $ into the system)

$ \,h[n]=\delta[n]+\delta[n-1]\, $


The system function can be found using the following formula (for LTI systems)

$ \,H(z)=\sum_{m=-\infty}^{\infty}h[m]z^{-m}\, $


Part B

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett