Line 14: | Line 14: | ||
<math>a_2 = \frac{-3}{j}</math> | <math>a_2 = \frac{-3}{j}</math> | ||
+ | |||
+ | <math>a_3 = 2</math> | ||
+ | |||
+ | <math>a_4=2</math> | ||
+ | |||
+ | else | ||
+ | |||
+ | <math>a_k = 0</math> | ||
+ | |||
+ | <math>w_0 = \pi</math> |
Revision as of 17:03, 25 September 2008
Defines the Fourier series of a periodic ct signal as
$ x(t) = \sum_{k=-\infty}^\infty a_k e^{jkw_0t} $
I set a example as
$ x(t)=6sin(2\pi t) + 4cos(4\pi t) $
$ =6*\frac{e^{2j\pi t} - e^{-2j\pi t}}{2j} + 4 *\frac{e^{4j\pi t} + e^{-4j\pi t}}{2} $
$ =3*\frac{e^{2j\pi t} - e^{-2j\pi t}}{j}+ 2 * (e^{4j\pi t}+e^{-4j\pi t}) $
$ a_1 = \frac{3}{j} $
$ a_2 = \frac{-3}{j} $
$ a_3 = 2 $
$ a_4=2 $
else
$ a_k = 0 $
$ w_0 = \pi $