(New page: == CT Fourier Series == <math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t}</math>) |
(→CT Fourier Series) |
||
Line 2: | Line 2: | ||
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t}</math> | <math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t}</math> | ||
+ | |||
+ | == Example == | ||
+ | |||
+ | <math>x(t) = 1 + sin(8\pi t) + 2cos(8\pi t) + cos(16\pi t + \frac{\pi}{4})</math> | ||
+ | |||
+ | <font size ="3">The fundamental frequency is <math>8\pi</math>.</font> |
Revision as of 15:43, 25 September 2008
CT Fourier Series
$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t} $
Example
$ x(t) = 1 + sin(8\pi t) + 2cos(8\pi t) + cos(16\pi t + \frac{\pi}{4}) $
The fundamental frequency is $ 8\pi $.