(h[n] and H(z))
(Define a DT LTI System)
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Define a DT LTI System ==
 
== Define a DT LTI System ==
  
<math> \,\ x[n] = 5*u[n-5] + 6*u[n+6] </math>
+
<math> \,\ y[n] = 5 * x[n-5] + 6 * x[n-6] </math>
  
=== h[n] and H(z) ===
+
=== a)  h[n] and H[z] ===
<br><br>
+
----
  
We obtain <math> h[n] </math> by finding the response of <math> x[n] </math> to the unit impulse response (<math> \delta[n] </math>).
+
In order to find h[n], we input <math> x[n] = \delta [n] </math> to y[n].  h[n] is then the unit impulse response.<br><br>
  
<math> \,\ h[n] = 5*\delta[n-5] + 6*\delta[n+6] </math>
+
<math> \,\ x[n] = \delta [n] </math><br>
 +
<math> \,\ h[n] = 5 * \delta [n-5] + 6 * \delta [n+6] </math><br><br>
 +
 
 +
H[z] is the system's function, and is defined by:<br><br>
 +
<math> \sum_{m = -\infty}^{\infty} h[m] * Z</math><sup>-m</sup>
 
<br>
 
<br>
 +
<math> \,\ H[z] = \sum_{m = -\infty}^{\infty} ( 5 * \delta [n-5] + 6 * \delta [n+6] ) * Z</math><sup>-m</sup>
 +
<br><br>
 +
This function will only be valid when n = 5 or n = -6 due to the <math> \delta </math>s.
 +
Therefore, the end result is:<br>
 +
<math> \,\ H[z] = 5 * Z</math><sup>5</sup><math> \,\ + 6 * Z</math><sup>-6</sup>
  
<math> \,\ H[z] = \sum_{m=-\infty}^\infty h[m] * Z</math><sup>(<math>-m</math>)</sup>
+
=== b)  Response of Signal in Question 1 ===
<math> \,\ H[z] = \sum_{m=-6}^{5}Z</math><sup>(<math>-m</math>)</sup>
+
----
 +
 
 +
From Question 1:
 +
Unfortunately, I did not make a DT signal for Parts 1/2.  Instead of going back and redoing my work, I am going to "steal" the work of a Mr. Collin Phillips (my apologies and gratitude to Mr. Collin Phillips).
 +
 
 +
According to his work:
 +
* <math> \,\ X[n] = 3cos(3\pi n + \pi) </math>
 +
* <math> \,\ a_0 = 0 </math>
 +
* <math> \,\ a_1 = -3 </math>
 +
* <math> \,\ a_k = 0 </math> elsewhere
 +
* <math> \,\ N = 2 </math>
 +
* <math> \,\ k = 3 </math>
 +
 
 +
 
 +
Response of the System <math> \,\ y[n] = \sum_{k = <N>}^{\infty} a_k H[e</math><sup><math> j2\pi k/N</math></sup><math> \,\ ]e</math><sup><math> jk(2\pi /N) n</math></sup>
 +
 
 +
Because <math> a_k </math> only has one value, this shouldn't be that hard to calculate.
 +
 
 +
<math> \,\ a_k </math> is only valid at <math> a_1 = -3 </math>.  Therefore...
 +
 
 +
<math> \,\ Z = e</math><sup><math> jk(2\pi /N) </math></sup>
 +
 
 +
<math> \,\ y[n] = -3 * [5 * e</math><sup><math>(j2\pi5*3/2)</math></sup><math> \,\ + 6 * e</math><sup><math>(j2\pi*-6*3/2)</math></sup><math> \,\ ] * e</math><sup><math>(j3*2\pi n/2)</math></sup>
 +
<br><br>
 +
<math> \,\ y[n] = -3 * [5 * e</math><sup><math>(j\pi15)</math></sup><math> \,\ + 6 * e</math><sup><math>(-j\pi*18)</math></sup><math> \,\ ] * e</math><sup><math>(j3*\pi* n)</math></sup>
 +
<br><br>
 +
<math> \,\ y[n] = -15 * e </math><sup><math>j3\pi(5 + n)</math></sup><math> \,\ - 18 * e </math><sup><math>j3\pi(n - 6)</math></sup>

Latest revision as of 06:56, 26 September 2008

Define a DT LTI System

$ \,\ y[n] = 5 * x[n-5] + 6 * x[n-6] $

a) h[n] and H[z]


In order to find h[n], we input $ x[n] = \delta [n] $ to y[n]. h[n] is then the unit impulse response.

$ \,\ x[n] = \delta [n] $
$ \,\ h[n] = 5 * \delta [n-5] + 6 * \delta [n+6] $

H[z] is the system's function, and is defined by:

$ \sum_{m = -\infty}^{\infty} h[m] * Z $-m
$ \,\ H[z] = \sum_{m = -\infty}^{\infty} ( 5 * \delta [n-5] + 6 * \delta [n+6] ) * Z $-m

This function will only be valid when n = 5 or n = -6 due to the $ \delta $s. Therefore, the end result is:
$ \,\ H[z] = 5 * Z $5$ \,\ + 6 * Z $-6

b) Response of Signal in Question 1


From Question 1: Unfortunately, I did not make a DT signal for Parts 1/2. Instead of going back and redoing my work, I am going to "steal" the work of a Mr. Collin Phillips (my apologies and gratitude to Mr. Collin Phillips).

According to his work:

  • $ \,\ X[n] = 3cos(3\pi n + \pi) $
  • $ \,\ a_0 = 0 $
  • $ \,\ a_1 = -3 $
  • $ \,\ a_k = 0 $ elsewhere
  • $ \,\ N = 2 $
  • $ \,\ k = 3 $


Response of the System $ \,\ y[n] = \sum_{k = <N>}^{\infty} a_k H[e $$ j2\pi k/N $$ \,\ ]e $$ jk(2\pi /N) n $

Because $ a_k $ only has one value, this shouldn't be that hard to calculate.

$ \,\ a_k $ is only valid at $ a_1 = -3 $. Therefore...

$ \,\ Z = e $$ jk(2\pi /N) $

$ \,\ y[n] = -3 * [5 * e $$ (j2\pi5*3/2) $$ \,\ + 6 * e $$ (j2\pi*-6*3/2) $$ \,\ ] * e $$ (j3*2\pi n/2) $

$ \,\ y[n] = -3 * [5 * e $$ (j\pi15) $$ \,\ + 6 * e $$ (-j\pi*18) $$ \,\ ] * e $$ (j3*\pi* n) $

$ \,\ y[n] = -15 * e $$ j3\pi(5 + n) $$ \,\ - 18 * e $$ j3\pi(n - 6) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva