(New page: More yet to come...)
 
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
More yet to come...
+
Given the following periodic DT signal
 +
 
 +
<math>\,x[n]=\sum_{k=-\infty}^{\infty}\delta[n-4k] + \pi\delta[n-1-4k] - 3\delta[n-2-4k] + \sqrt[e]{\frac{\pi^3}{\ln(5)}}\delta[n-3-4k]\,</math>
 +
 
 +
which is an infinite sum of shifted copies of a non-periodic signal, compute its Fourier series coefficients.
 +
 
 +
== Answer ==
 +
The equation for determining the Fourier coefficients of a DT signal is
 +
 
 +
<math>\,a_k=\frac{1}{N}\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n}\,</math>
 +
 
 +
 
 +
The function has a fundamental period of 4 (it can be easily shown that <math>\,x[n]=x[n+4], \forall n\in\mathbb{Z}\,</math>), so <math>\,N=4\,</math>. Therefore, we get
 +
 
 +
<math>\,a_k=\frac{1}{4}\sum_{n=0}^{3}x[n]e^{-jk\frac{2\pi}{4}n}\,</math>
 +
 
 +
<math>\,a_k=\frac{1}{4}(x[0]e^{0} + x[1]e^{-jk\frac{2\pi}{4}1} + x[2]e^{-jk\frac{2\pi}{4}2} + x[3]e^{-jk\frac{2\pi}{4}3})\,</math>
 +
 
 +
<math>\,a_k=\frac{1}{4}(1 + \pi e^{-jk\frac{\pi}{2}} - 3e^{-jk\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-jk\frac{3\pi}{2}})\,</math>
 +
 
 +
 
 +
Using this equation, we can find all Fourier coefficients <math>\,a_k, k=0,1,2,3\,</math> of the signal <math>\,x[n]\,</math>. They are:
 +
 
 +
<math>\,a_0=\frac{1}{4}(1 + \pi e^{0} - 3e^{0} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{0})\,</math>
 +
 
 +
<math>\,a_0=\frac{1}{4}(1 + \pi - 3 + \sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>
 +
 
 +
<math>\,a_0=\frac{1}{4}(-2 + \pi + \sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>
 +
 
 +
 
 +
 
 +
<math>\,a_1=\frac{1}{4}(1 + \pi e^{-j\frac{\pi}{2}} - 3e^{-j\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-j\frac{3\pi}{2}})\,</math>
 +
 
 +
<math>\,a_1=\frac{1}{4}(1 - j\pi + 3 + j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>
 +
 
 +
<math>\,a_1=\frac{1}{4}(4 - j\pi + j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>
 +
 
 +
 
 +
 
 +
<math>\,a_2=\frac{1}{4}(1 + \pi e^{-j\pi} - 3e^{-j2\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-j3\pi})\,</math>
 +
 
 +
<math>\,a_2=\frac{1}{4}(1 - \pi - 3 - \sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>
 +
 
 +
<math>\,a_2=\frac{1}{4}(-2 - \pi - \sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>
 +
 
 +
 
 +
 
 +
<math>\,a_3=\frac{1}{4}(1 + \pi e^{-j\frac{3\pi}{2}} - 3e^{-j3\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-j\frac{9\pi}{2}})\,</math>
 +
 
 +
<math>\,a_3=\frac{1}{4}(1 + j\pi + 3 - j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>
 +
 
 +
<math>\,a_3=\frac{1}{4}(4 + j\pi - j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\,</math>

Latest revision as of 14:10, 25 September 2008

Given the following periodic DT signal

$ \,x[n]=\sum_{k=-\infty}^{\infty}\delta[n-4k] + \pi\delta[n-1-4k] - 3\delta[n-2-4k] + \sqrt[e]{\frac{\pi^3}{\ln(5)}}\delta[n-3-4k]\, $

which is an infinite sum of shifted copies of a non-periodic signal, compute its Fourier series coefficients.

Answer

The equation for determining the Fourier coefficients of a DT signal is

$ \,a_k=\frac{1}{N}\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n}\, $


The function has a fundamental period of 4 (it can be easily shown that $ \,x[n]=x[n+4], \forall n\in\mathbb{Z}\, $), so $ \,N=4\, $. Therefore, we get

$ \,a_k=\frac{1}{4}\sum_{n=0}^{3}x[n]e^{-jk\frac{2\pi}{4}n}\, $

$ \,a_k=\frac{1}{4}(x[0]e^{0} + x[1]e^{-jk\frac{2\pi}{4}1} + x[2]e^{-jk\frac{2\pi}{4}2} + x[3]e^{-jk\frac{2\pi}{4}3})\, $

$ \,a_k=\frac{1}{4}(1 + \pi e^{-jk\frac{\pi}{2}} - 3e^{-jk\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-jk\frac{3\pi}{2}})\, $


Using this equation, we can find all Fourier coefficients $ \,a_k, k=0,1,2,3\, $ of the signal $ \,x[n]\, $. They are:

$ \,a_0=\frac{1}{4}(1 + \pi e^{0} - 3e^{0} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{0})\, $

$ \,a_0=\frac{1}{4}(1 + \pi - 3 + \sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $

$ \,a_0=\frac{1}{4}(-2 + \pi + \sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $


$ \,a_1=\frac{1}{4}(1 + \pi e^{-j\frac{\pi}{2}} - 3e^{-j\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-j\frac{3\pi}{2}})\, $

$ \,a_1=\frac{1}{4}(1 - j\pi + 3 + j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $

$ \,a_1=\frac{1}{4}(4 - j\pi + j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $


$ \,a_2=\frac{1}{4}(1 + \pi e^{-j\pi} - 3e^{-j2\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-j3\pi})\, $

$ \,a_2=\frac{1}{4}(1 - \pi - 3 - \sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $

$ \,a_2=\frac{1}{4}(-2 - \pi - \sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $


$ \,a_3=\frac{1}{4}(1 + \pi e^{-j\frac{3\pi}{2}} - 3e^{-j3\pi} + \sqrt[e]{\frac{\pi^3}{\ln(5)}}e^{-j\frac{9\pi}{2}})\, $

$ \,a_3=\frac{1}{4}(1 + j\pi + 3 - j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $

$ \,a_3=\frac{1}{4}(4 + j\pi - j\sqrt[e]{\frac{\pi^3}{\ln(5)}})\, $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood