(New page: == Example of a periodic CT signal == The following is a periodic signal: <math>\,x(t)=(1+j)cos(\pi t)+sin(2\pi t)</math> Using Eulers formula, we can interpret this function in terms of...)
 
Line 1: Line 1:
 +
== Fourier sum definition ==
 +
The function as defined by summing fourier coefficients <math>\,a_k</math> is defined as:
 +
 +
<math>x(t)=\sum^{\infty}_{k=-\infty} a_k e^{jk\omega_0 t}\,</math>
 +
 
== Example of a periodic CT signal ==
 
== Example of a periodic CT signal ==
 +
 
The following is a periodic signal:
 
The following is a periodic signal:
  
 
<math>\,x(t)=(1+j)cos(\pi t)+sin(2\pi t)</math>
 
<math>\,x(t)=(1+j)cos(\pi t)+sin(2\pi t)</math>
  
Using Eulers formula, we can interpret this function in terms of exponentials which can then be used to compute the <math>a_k</math> values for a Fourier series:
+
Using Eulers formula, we can interpret this function in terms of exponentials which can then be used to compute the <math>\,a_k</math> values for a Fourier series:
  
 
<math>\,x(t)=(1+j)\frac {e^{j\pi t}+e^{-j \pi t}}{2} + \frac {e^{j2 \pi t}-e^{-j2 \pi t}}{2j}</math>
 
<math>\,x(t)=(1+j)\frac {e^{j\pi t}+e^{-j \pi t}}{2} + \frac {e^{j2 \pi t}-e^{-j2 \pi t}}{2j}</math>
  
 +
Now splitting up:
 +
 +
<math>x(t)=\frac{1+j}{2}e^{j\pi t}+\frac{1+j}{2}e^{-j\pi t}+\frac{1+j}{2j}e^{j\pi t}+\frac{-1-j}{2j}e^{-j\pi t}</math>
 +
 +
choose <math>\,\omega_0</math> as <math>\,\pi</math>, the smallest period between the two parts.
 +
 +
so this function becomes:
 +
 +
<math>x(t)=\sum^{\infty}_{k=-\infty} a_k e^{jk\pi t}\,</math>
 +
 +
Which very nearly matches our function, we only need solve or point out our <math>\,a_k</math> values.
 +
 +
<math>a_1=\frac{1+j}{2}</math>
 +
 +
<math>a_-1=\frac{1+j}{2}</math>
 +
 +
<math>a_2=\frac{1+j}{2j}</math>
  
 +
<math>a_-2=\frac{-1-j}{2j}</math>
  
<math>x(t)=\sum^{\infty}_{k = -\infty} a_k e^{jk\omega_0 t}\,</math>
+
All other <math>\,a_k</math> values are zero.

Revision as of 12:24, 25 September 2008

Fourier sum definition

The function as defined by summing fourier coefficients $ \,a_k $ is defined as:

$ x(t)=\sum^{\infty}_{k=-\infty} a_k e^{jk\omega_0 t}\, $

Example of a periodic CT signal

The following is a periodic signal:

$ \,x(t)=(1+j)cos(\pi t)+sin(2\pi t) $

Using Eulers formula, we can interpret this function in terms of exponentials which can then be used to compute the $ \,a_k $ values for a Fourier series:

$ \,x(t)=(1+j)\frac {e^{j\pi t}+e^{-j \pi t}}{2} + \frac {e^{j2 \pi t}-e^{-j2 \pi t}}{2j} $

Now splitting up:

$ x(t)=\frac{1+j}{2}e^{j\pi t}+\frac{1+j}{2}e^{-j\pi t}+\frac{1+j}{2j}e^{j\pi t}+\frac{-1-j}{2j}e^{-j\pi t} $

choose $ \,\omega_0 $ as $ \,\pi $, the smallest period between the two parts.

so this function becomes:

$ x(t)=\sum^{\infty}_{k=-\infty} a_k e^{jk\pi t}\, $

Which very nearly matches our function, we only need solve or point out our $ \,a_k $ values.

$ a_1=\frac{1+j}{2} $

$ a_-1=\frac{1+j}{2} $

$ a_2=\frac{1+j}{2j} $

$ a_-2=\frac{-1-j}{2j} $

All other $ \,a_k $ values are zero.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett