Line 8: Line 8:
 
3. <math>\sum_{n=1}^{6}(-1)^nx[n] = 2</math>
 
3. <math>\sum_{n=1}^{6}(-1)^nx[n] = 2</math>
  
4. <math>a_k = a_{k+1}\,</math>
+
4. For even <math>k\,</math>'s, <math>a_k = a_{k+1}\,</math>
  
  

Revision as of 12:50, 25 September 2008

Guess the Periodic Signal

A certain periodic signal has the following properties:

1. N = 4

2. $ \sum_{n=0}^{5}x[n] = 4 $

3. $ \sum_{n=1}^{6}(-1)^nx[n] = 2 $

4. For even $ k\, $'s, $ a_k = a_{k+1}\, $


Answer

From 1. we know that $ x[n] = \sum_{n=0}^{5}a_k e^{jk\frac{\pi}{2}n}\, $

Using 2., it is apparent that this is the formula for $ a_k\, $. Specifically, for $ a_0\, $, since the only thing under the sum is $ x[n]\, $. So,

$ \frac{1}{4}\sum_{n=0}^{5}x[n] = \frac{1}{4}*4\, $, and


$ = 1 = a_0\, $

Now that we know $ a_0\, $, we know that $ x[n] = 1 + \sum_{n=1}^{5}a_k e^{jk\frac{\pi}{2}n}\, $


Since $ \omega_0 = \frac{\pi}{2}\, $, let's try and find $ a_2\, $,

$ a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n] e^{-2j\frac{\pi}{2}n} = \frac{1}{4}\sum_{n=0}^{5}x[n] e^{-j\pi n}\, $


Using the property that $ e^{-j\pi n} = (e^{-j\pi})^{n} = (-1)^{n} \, $, we can change the above equation to

$ a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n](-1)^{n}\, $


Since the function is periodic and the $ a_k\, $'s repeat every 4 integers, we are able to shift the bounds of summation by one.

According to 3. $ \sum_{n=1}^{6}(-1)^nx[n] = 2 $, and

$ a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n](-1)^{n}\, $ $ a_2 = \frac{1}{4} * 2\, $, and

$ a_2 = \frac{1}{2}\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang