(New page: LTI System: <math>y(t) = Kx(t)\,</math> where K is a constant Unit Impulse Response: <math>h(t) = K \delta(t)\,</math> Frequency Response:)
 
Line 4: Line 4:
  
 
Frequency Response:
 
Frequency Response:
 +
 +
<math>y(t) = \int^{\infty}_{-\infty} h(t) * x(t) dt\,</math> where <math>x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4})</math>

Revision as of 11:11, 25 September 2008

LTI System: $ y(t) = Kx(t)\, $ where K is a constant

Unit Impulse Response: $ h(t) = K \delta(t)\, $

Frequency Response:

$ y(t) = \int^{\infty}_{-\infty} h(t) * x(t) dt\, $ where $ x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett