Line 22: Line 22:
 
== Part B ==
 
== Part B ==
  
<math>x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\,</math>
+
<math>x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)]\,</math>
  
 
<math>y(t) = H(jw)x(t)\,</math>
 
<math>y(t) = H(jw)x(t)\,</math>
  
 
<math>y(t) = 10e^{-jw}\times[4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\,</math>
 
<math>y(t) = 10e^{-jw}\times[4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\,</math>

Revision as of 12:04, 25 September 2008

Part A

CT LTI system:

y(t) = 10x(t-1)

plugging in delta(t) into the system we get:

h(t) = 10delta(t-1)

$ s = j\omega $

$ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st} $

$ H(s) = \int_{-\infty}^{\infty}10delta(t-1)e^{-st} $

$ H(s) = 10\times\int_{-\infty}^{\infty}delta(t-1)e^{-st} $

$ H(s) = 10e^{-s}\, $


Part B

$ x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)]\, $

$ y(t) = H(jw)x(t)\, $

$ y(t) = 10e^{-jw}\times[4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett