Line 1: Line 1:
 +
 +
== Part A ==
 +
 
CT LTI system:  
 
CT LTI system:  
  
Line 16: Line 19:
  
 
<math>H(s) = 10e^{-s}\,</math>
 
<math>H(s) = 10e^{-s}\,</math>
 +
 +
 +
== Part B ==
 +
 +
<math>x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\,</math>

Revision as of 11:04, 25 September 2008

Part A

CT LTI system:

y(t) = 10x(t-1)

plugging in delta(t) into the system we get:

h(t) = 10delta(t-1)

$ s = j\omega $

$ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st} $

$ H(s) = \int_{-\infty}^{\infty}10delta(t-1)e^{-st} $

$ H(s) = 10\times\int_{-\infty}^{\infty}delta(t-1)e^{-st} $

$ H(s) = 10e^{-s}\, $


Part B

$ x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\, $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach