(UNIT IMPULSE RESPONSE OF SYSTEM)
(UNIT IMPULSE RESPONSE OF SYSTEM)
Line 14: Line 14:
  
 
<math>h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\!</math>
 
<math>h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\!</math>
 +
 +
 +
 +
== THE SYSTEM FUNCTION ==
 +
 +
In order to compute the system function H(s), we can simply take the laplace transform of the unit impulse response of the system.  When we take the laplace transform, we find that <math> H(s) = \frac{7}{3} + \frac{9e^{-8jw}}{3}\!</math>

Revision as of 11:26, 25 September 2008

CT LTI SYSTEM

I chose the following continusous-time linear time invariant system:

$ f(t) = \frac{7x(t)}{3} + \frac{9x(t+8)}{2}\! $

UNIT IMPULSE RESPONSE OF SYSTEM

To find the unit impulse response of the system, we set $ x(t) = \delta(t)\! $. Then we obtain the following unit impulse response:


$ h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\! $


THE SYSTEM FUNCTION

In order to compute the system function H(s), we can simply take the laplace transform of the unit impulse response of the system. When we take the laplace transform, we find that $ H(s) = \frac{7}{3} + \frac{9e^{-8jw}}{3}\! $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang