Line 8: Line 8:
  
 
<math>N_2sin = \frac{2\pi}{\pi} k = \frac{2}{1} k</math>
 
<math>N_2sin = \frac{2\pi}{\pi} k = \frac{2}{1} k</math>
 +
  
 
<math>N_4sin = \frac{2\pi}{\frac{\pi}{2}} k = \frac{2}{\frac{1}{2}} k</math>
 
<math>N_4sin = \frac{2\pi}{\frac{\pi}{2}} k = \frac{2}{\frac{1}{2}} k</math>
 +
 +
 +
Take <math>k = 1</math>,
 +
 +
<math>N_2sin = 2</math>
 +
 +
<math>N_4sin = 4</math>, so the overall fundamental period is
 +
 +
<math>N = 4</math>

Revision as of 10:20, 25 September 2008

Define a periodic DT signal

I am going to choose a sine signal, since there have been many cosines done already.

DT signal: $ x[n] = 2\sin(\pi n + \pi) + 4\sin(\frac{\pi}{2} n + \pi)\, $


Now, each sine has its own period, and the fundamental period of the function is the greater of the separate periods.

$ N_2sin = \frac{2\pi}{\pi} k = \frac{2}{1} k $


$ N_4sin = \frac{2\pi}{\frac{\pi}{2}} k = \frac{2}{\frac{1}{2}} k $


Take $ k = 1 $,

$ N_2sin = 2 $

$ N_4sin = 4 $, so the overall fundamental period is

$ N = 4 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett