(New page: == Define a CT LTI System == <math>y(t)=2x(t)-3x(t-4)\!</math> == Unit Impulse Response == The unit impulse response is simply the systems response to an input <math>\delta(t)\!</math>....)
 
Line 6: Line 6:
 
== Unit Impulse Response ==
 
== Unit Impulse Response ==
 
The unit impulse response is simply the systems response to an input <math>\delta(t)\!</math>.  Thus, in our case, the unit impulse response is simply <math>h(t)=2\delta(t)-3\delta(t-4)\!</math>
 
The unit impulse response is simply the systems response to an input <math>\delta(t)\!</math>.  Thus, in our case, the unit impulse response is simply <math>h(t)=2\delta(t)-3\delta(t-4)\!</math>
 +
 +
 +
== System Function ==
 +
To find the system function <math>H(s)\!</math> we use the formula <br> <math>H(s)=\int__{-\infty}^\infty h(t)e^{st}dt</math> where <math>s=j\omega\!</math>.

Revision as of 09:58, 25 September 2008

Define a CT LTI System

$ y(t)=2x(t)-3x(t-4)\! $


Unit Impulse Response

The unit impulse response is simply the systems response to an input $ \delta(t)\! $. Thus, in our case, the unit impulse response is simply $ h(t)=2\delta(t)-3\delta(t-4)\! $


System Function

To find the system function $ H(s)\! $ we use the formula
$ H(s)=\int__{-\infty}^\infty h(t)e^{st}dt $ where $ s=j\omega\! $.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva