m |
(started h(s)) |
||
Line 1: | Line 1: | ||
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]] | [[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]] | ||
− | Homework 4 Ben Horst: [[HW4.1 Ben Horst _ECE301Fall2008mboutin| 4.1]] | + | Homework 4 Ben Horst: [[HW4.1 Ben Horst _ECE301Fall2008mboutin| 4.1]] :: [[HW4.3 Ben Horst _ECE301Fall2008mboutin| 4.3]] :: [[HW4.4 Ben Horst _ECE301Fall2008mboutin| 4.4]] |
+ | ---- | ||
+ | ==System== | ||
+ | y(t) = 3x(t) which is proven as an LTI system ([[HW2-C_Ben_Horst _ECE301Fall2008mboutin| shown here]]) | ||
+ | |||
+ | ==Impulse Response== | ||
+ | y(<math>\delta(t)</math>) = 3(<math>\delta(t)</math>) | ||
+ | |||
+ | =>impulse response = <math>2\delta(t)</math> | ||
+ | |||
+ | |||
+ | ==System Function== | ||
+ | Find H(s): | ||
+ | |||
+ | H(s) = <math> \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau</math>, where <math>j\omega</math> is <em>s</em>. | ||
+ | |||
+ | |||
+ | |||
+ | ==Example Response== | ||
+ | =Input= | ||
+ | |||
+ | |||
+ | =Response= |
Revision as of 14:01, 25 September 2008
Homework 4 Ben Horst: 4.1 :: 4.3 :: 4.4
System
y(t) = 3x(t) which is proven as an LTI system ( shown here)
Impulse Response
y($ \delta(t) $) = 3($ \delta(t) $)
=>impulse response = $ 2\delta(t) $
System Function
Find H(s):
H(s) = $ \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau $, where $ j\omega $ is s.