Line 9: Line 9:
 
We can rewrite the signal <math>x(t)</math> as
 
We can rewrite the signal <math>x(t)</math> as
  
<math>\,x(t)=\frac{3\pi}{2}\,</math>
+
<math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math>

Revision as of 08:27, 25 September 2008

Given the periodic CT signal

$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $

compute its Fourier series coefficients.

Answer

We can rewrite the signal $ x(t) $ as

$ \,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\, $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009