(New page: ===System=== y(t) = 5x(t) ===Unit Impulse Response=== <math>x(t) = \delta(t)</math> <math>h(t) = 5\delta(t)</math> ===System Function=== :<math>y(t) = \int^{\infty}_{-\infty} h(\tau) * ...)
 
(Response to a signal)
 
(One intermediate revision by the same user not shown)
Line 14: Line 14:
 
:<math>H(s) = 5 e^{-jw0}</math>
 
:<math>H(s) = 5 e^{-jw0}</math>
 
:<math>H(s) = 5\,</math>
 
:<math>H(s) = 5\,</math>
 +
 +
===Response to a signal===
 +
 +
:<math> x(t) = 2sin(2\pi t) + cos(\pi t). </math>
 +
 +
:<math> x(t) = \frac{1}{j}(e^{2 \pi jt} + e^{-2 \pi jt}) + \frac{1}{2}(e^{\pi jt}+e^{-\pi jt}) </math>
 +
 +
:<math> y(t) = H(s)e^{-st}x(t) </math>
 +
 +
:<math> y(t) = 5e^{-st}(\frac{1}{j}(e^{2 \pi jt} + e^{-2 \pi jt}) + \frac{1}{2}(e^{\pi jt}+e^{-\pi jt})) </math>
 +
 +
:<math> y(t) = \frac{5e^{-st}}{j}(e^{2 \pi jt} + e^{-2 \pi jt}) + \frac{5e^{-st}}{2}(e^{\pi jt}+e^{-\pi jt}) </math>

Latest revision as of 07:43, 25 September 2008

System

y(t) = 5x(t)

Unit Impulse Response

$ x(t) = \delta(t) $ $ h(t) = 5\delta(t) $

System Function

$ y(t) = \int^{\infty}_{-\infty} h(\tau) * x(\tau) d\tau, $
$ y(t) = \int^{\infty}_{-\infty} 5\delta(\tau) * e^{-jw(t -\tau)} d \tau, $
$ y(t) = e^{jwt} \int^{\infty}_{-\infty} 5 \delta(\tau) e^{-jw\tau} d\tau $
$ H(s) = \int^{\infty}_{-\infty} 5 \delta(\tau) e^{-jw\tau} d\tau $
$ H(s) = 5 e^{-jw0} $
$ H(s) = 5\, $

Response to a signal

$ x(t) = 2sin(2\pi t) + cos(\pi t). $
$ x(t) = \frac{1}{j}(e^{2 \pi jt} + e^{-2 \pi jt}) + \frac{1}{2}(e^{\pi jt}+e^{-\pi jt}) $
$ y(t) = H(s)e^{-st}x(t) $
$ y(t) = 5e^{-st}(\frac{1}{j}(e^{2 \pi jt} + e^{-2 \pi jt}) + \frac{1}{2}(e^{\pi jt}+e^{-\pi jt})) $
$ y(t) = \frac{5e^{-st}}{j}(e^{2 \pi jt} + e^{-2 \pi jt}) + \frac{5e^{-st}}{2}(e^{\pi jt}+e^{-\pi jt}) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang