(New page: ===System=== y(t) = 5x(t) ===Unit Impulse Response=== <math>x(t) = \delta(t)</math> <math>h(t) = 5\delta(t)</math> ===System Function=== :<math>y(t) = \int^{\infty}_{-\infty} h(\tau) * ...)
 
(System Function)
Line 14: Line 14:
 
:<math>H(s) = 5 e^{-jw0}</math>
 
:<math>H(s) = 5 e^{-jw0}</math>
 
:<math>H(s) = 5\,</math>
 
:<math>H(s) = 5\,</math>
 +
 +
===Response to a signal===

Revision as of 07:34, 25 September 2008

System

y(t) = 5x(t)

Unit Impulse Response

$ x(t) = \delta(t) $ $ h(t) = 5\delta(t) $

System Function

$ y(t) = \int^{\infty}_{-\infty} h(\tau) * x(\tau) d\tau, $
$ y(t) = \int^{\infty}_{-\infty} 5\delta(\tau) * e^{-jw(t -\tau)} d \tau, $
$ y(t) = e^{jwt} \int^{\infty}_{-\infty} 5 \delta(\tau) e^{-jw\tau} d\tau $
$ H(s) = \int^{\infty}_{-\infty} 5 \delta(\tau) e^{-jw\tau} d\tau $
$ H(s) = 5 e^{-jw0} $
$ H(s) = 5\, $

Response to a signal

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett