Line 12: Line 12:
 
:<math>H(z)=10 e^{0 z} + e^{-1 z} \, </math>
 
:<math>H(z)=10 e^{0 z} + e^{-1 z} \, </math>
 
:<math>H(z)=10 + e^{- z} \, </math>, where z =jw
 
:<math>H(z)=10 + e^{- z} \, </math>, where z =jw
 +
 +
==Part B==
 +
:<math>x[n]= -5(e^{j \dfrac{\pi}{2} n}) \,</math>

Revision as of 06:16, 25 September 2008

DT LTI system

The system is:

$ y(n)=4x(n)+x(n-3) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ d (n) => System =>4 d (n) + d(n-3)\, $
$ h(t)=4d(n) +d(n-3)\, $
$ H(z)=\sum_{-\infty}^{\infty} h(n)e^{-s n} $
$ H(z)=\sum_{-\infty}^{\infty} (4d(n) +d(n-3))e^{-z n} $

Using the shifting property,

$ H(z)=10 e^{0 z} + e^{-1 z} \, $
$ H(z)=10 + e^{- z} \, $, where z =jw

Part B

$ x[n]= -5(e^{j \dfrac{\pi}{2} n}) \, $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett