(New page: ==Fourier Transform== Let <math>x(t)=sin(\pi t) + cos(2\pi t) </math> Remember that the formula for CT Fourier Series are: <math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math> ...)
 
(Solution)
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
 +
<math>x(t)= \frac{e^{\pi jt}+e^{-\pi jt}}{2} + \frac{e^{2\pi jt}+e^{-2\pi jt}}{2}</math>

Revision as of 05:14, 25 September 2008

Fourier Transform

Let $ x(t)=sin(\pi t) + cos(2\pi t) $

Remember that the formula for CT Fourier Series are:

$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.

Solution

$ x(t)= \frac{e^{\pi jt}+e^{-\pi jt}}{2} + \frac{e^{2\pi jt}+e^{-2\pi jt}}{2} $

Alumni Liaison

EISL lab graduate

Mu Qiao