Line 14: Line 14:
  
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+1]e^{jm\omega}\,</math>
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+1]e^{jm\omega}\,</math>
 
find m value to make the value inside the bracket zero
 
 
m = -5 for the first set and 3 for the second set
 
  
 
<math>F(z) = e^{j\omega} \,</math>
 
<math>F(z) = e^{j\omega} \,</math>

Revision as of 17:29, 26 September 2008

4. Define a DT LTI system.

a) Obtain the unit impulse response h[n] and the system function H(z) of your system.


Defining a DT LTI: $ y[n] = x[n+1]\, $

Unit impulse response:

$ h[n] = \delta[n+1]\, $

Then we find the frequency response:

$ F(z) = \sum^{\infty}_{m=-\infty} h[m+1]e^{jm\omega}\, $

$ F(z) = e^{j\omega} \, $


b) Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal.


Signal defined in Question 1:

$ X[n] = 6\cos(3 \pi n + \pi)\, $

$ x[n] = \sum^{2}_{k = -1} a_k e^{jk\frac{\pi}{2} n}\, $

$ X[0] = -6 \, $

$ X[1] = 6 \, $

$ X[2] = -6 \, $

$ X[-1] = 6 \, $

The pattern of k can be seen since it forms a wave.


$ y[n] = \sum^{2}_{k = -1} a_k F(z) e^{jk\frac{\pi}{2} n}\, $

$ y[n] = \sum^{2}_{k = -1} a_k (e^{-5j\omega} + e^{3j\omega}) e^{jk\frac{\pi}{2} n}\, $

$ y[n] = 6 (e^{-5j\omega} + e^{3j\omega}) e^{j(-1)\frac{\pi}{2} n} + (-6) (e^{-5j\omega} + e^{3j\omega}) e^{0}\, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett