(New page: == Fourier Series for DT signals == Let <math>x[n]\,</math> be a periodic DT signal with fundamental period N. Then <math>x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n}</math> where ...) |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
− | where <math>a_k=\frac{1}{ | + | where <math>a_k=\frac{1}{N}\sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N} n} </math> |
note that <math>\frac{2\pi}{N} =\omega_0</math> | note that <math>\frac{2\pi}{N} =\omega_0</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Now consider the signal <math>x[n]=sin(3 \pi n)\,</math> | ||
+ | |||
+ | It's periodic because <math>\frac{\omega_0}{2\pi} = \frac{3\pi}{2\pi} =1.5 </math> is a rational number. | ||
+ | |||
+ | |||
+ | |||
+ | Notice that <math>x[0]= 1, x[1]=-1, x[2]=1, x[3]=-1 \,</math> etc | ||
+ | |||
+ | |||
+ | Thus the fundamental period is 2. | ||
+ | |||
+ | Then... | ||
+ | |||
+ | <math>a_0=\frac{1+(-1)}{2}=0 </math> | ||
+ | |||
+ | <math>a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j1\frac{2\pi}{2} n} </math> | ||
+ | |||
+ | <math>a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j\pi n} </math> | ||
+ | |||
+ | <math>a_1=\frac{1}{2}(x[0] e^{0} + x[1]e^{-j\pi})=1 </math> | ||
+ | |||
+ | |||
+ | Finally, | ||
+ | |||
+ | <math>a_{k_{even}}=0\,</math> | ||
+ | |||
+ | <math>a_{k_{odd}}=1\,</math> |
Latest revision as of 05:49, 25 September 2008
Fourier Series for DT signals
Let $ x[n]\, $ be a periodic DT signal with fundamental period N.
Then $ x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n} $
where $ a_k=\frac{1}{N}\sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N} n} $
note that $ \frac{2\pi}{N} =\omega_0 $
Now consider the signal $ x[n]=sin(3 \pi n)\, $
It's periodic because $ \frac{\omega_0}{2\pi} = \frac{3\pi}{2\pi} =1.5 $ is a rational number.
Notice that $ x[0]= 1, x[1]=-1, x[2]=1, x[3]=-1 \, $ etc
Thus the fundamental period is 2.
Then...
$ a_0=\frac{1+(-1)}{2}=0 $
$ a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j1\frac{2\pi}{2} n} $
$ a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j\pi n} $
$ a_1=\frac{1}{2}(x[0] e^{0} + x[1]e^{-j\pi})=1 $
Finally,
$ a_{k_{even}}=0\, $
$ a_{k_{odd}}=1\, $