Line 5: Line 5:
 
<math>x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}+\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})}</math>
 
<math>x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}+\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})}</math>
  
<math>x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+(\frac{1}{2}e^{j\frac {\pi}{4}}e^{2\omega_0 t}+(\frac{1}{2}e^{-j\frac {\pi}{4}}e^{2\omega_0 t}</math>
+
<math>x(t) = 1e^{0j\omega_0 t}+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j\frac {\pi}{4}}e^{2\omega_0 t}+\frac{1}{2}e^{-j\frac {\pi}{4}}e^{2\omega_0 t}</math>
  
 +
Hence we get,
  
I take <math>\omega_o \,</math> as <math>\pi \,</math> since both functions have a period based on it.
+
<math>a_0 = 1</math>
  
The following is the coefficient of the signal:
+
<math>a_1 = \frac{1}{2j},</math>
  
<math>a_3 = \frac{1}{2}\,</math>
+
<math>a_{-1} = -\frac{1}{2j},</math>
  
<math>a_{-3} = \frac{1}{2}\,</math>
+
<math>a_2 = -\frac{1}{2}e^{j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1+j),</math>
  
<math>a_{4} = \frac{1}{2j}\,</math>
+
<math>a_{-2} = -\frac{1}{2}e^{-j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1-j),</math>
 
+
<math>a_{-4} = -\frac{1}{2j}\,</math>
+
  
 
We can write the function in the following illiterations:
 
We can write the function in the following illiterations:

Revision as of 04:05, 25 September 2008

CT Periodic Signal : $ x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4}) $

$ x(t) = 1+\frac {1}{2j} (e^{j\omega_0 t}-e^{-j\omega_0 t})+\frac{1}{2}(e^{j(2\omega_0 t+\frac {\pi}{4})}+e^{-j(2\omega_0 t+\frac {\pi}{4})}) $

$ x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}+\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})} $

$ x(t) = 1e^{0j\omega_0 t}+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j\frac {\pi}{4}}e^{2\omega_0 t}+\frac{1}{2}e^{-j\frac {\pi}{4}}e^{2\omega_0 t} $

Hence we get,

$ a_0 = 1 $

$ a_1 = \frac{1}{2j}, $

$ a_{-1} = -\frac{1}{2j}, $

$ a_2 = -\frac{1}{2}e^{j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1+j), $

$ a_{-2} = -\frac{1}{2}e^{-j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1-j), $

We can write the function in the following illiterations:

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $ where

$ a_3 = a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j} = -a_{-4}\, $

$ a_k = 0 , k \neq 3,-3,4,-4\, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva