(→Solution) |
|||
Line 16: | Line 16: | ||
== Solution == | == Solution == | ||
The fundamental period <math>T\!</math> is <math>2\pi\!</math>. Thus we use the equation <math>\omega_0=\frac{2\pi}{T}\!</math> to find <math>\omega_0=1\!</math> | The fundamental period <math>T\!</math> is <math>2\pi\!</math>. Thus we use the equation <math>\omega_0=\frac{2\pi}{T}\!</math> to find <math>\omega_0=1\!</math> | ||
+ | <br> | ||
+ | To find the value of <math>a_0\!</math> we simply plug and chug: | ||
+ | <br> | ||
+ | <math>a_0=\frac{1}{T}\int_0^T[ |
Revision as of 16:18, 24 September 2008
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.
Defined Signal
$ x(t)=4sin(3t)+(1+6j)cos(2t)\! $
Solution
The fundamental period $ T\! $ is $ 2\pi\! $. Thus we use the equation $ \omega_0=\frac{2\pi}{T}\! $ to find $ \omega_0=1\! $
To find the value of $ a_0\! $ we simply plug and chug:
$ a_0=\frac{1}{T}\int_0^T[ $