Line 16: | Line 16: | ||
== B == | == B == | ||
+ | |||
+ | <font size="3">Let <math>x(t)=cos(4 \pi t) + sin(6 \pi t)</math> with Fourier series coefficients are as follows: | ||
+ | |||
+ | <math>a_{4} = a_{-4} = \frac{1}{2}</math> | ||
+ | |||
+ | <math>a_{6} = -a_{-6} = \frac{1}{2j}</math> | ||
+ | |||
+ | All other <math>a_{k}</math> values are 0</font> |
Revision as of 11:53, 24 September 2008
A
Let $ y(t)=\int_{-\infty}^{\infty}2x(t)dt $
Then $ h(t) =2u(t) $
And $ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st}dt $
$ =\int_{-\infty}^{\infty}2u(t)e^{-st}dt $
$ =\int_{0}^{\infty}2e^{-st}dt $
$ =(\frac{-2}{s}e^{-st})|_{0}^{\infty} $
$ =\frac{2}{s} $
B
Let $ x(t)=cos(4 \pi t) + sin(6 \pi t) $ with Fourier series coefficients are as follows:
$ a_{4} = a_{-4} = \frac{1}{2} $
$ a_{6} = -a_{-6} = \frac{1}{2j} $
All other $ a_{k} $ values are 0