(Periodic CT Signal and Its Fourier Coefficients)
(Periodic CT Signal and Its Fourier Coefficients)
Line 8: Line 8:
 
<math> a_k = \frac{1}{T} \int_{0}^{T} x(t)* e</math><sup>(<math>-j*k*w_0*t</math>)</sup><math> \,\ dt</math>
 
<math> a_k = \frac{1}{T} \int_{0}^{T} x(t)* e</math><sup>(<math>-j*k*w_0*t</math>)</sup><math> \,\ dt</math>
  
 +
If our signal <math> x(t) </math> consists of only sine and cosine waves, we don't have to do all those complicated integrals in order to find the Fourier coefficients <math> a_k </math>.
  
  
Line 31: Line 32:
  
 
The period <math> \,\ T = 2\pi </math> so if <math> \,\ w_0 = \frac{2\pi}{T} </math>, then <math> \,\ w_0 = 1 </math>.
 
The period <math> \,\ T = 2\pi </math> so if <math> \,\ w_0 = \frac{2\pi}{T} </math>, then <math> \,\ w_0 = 1 </math>.
 +
 +
Our new equation can now be rewritten as:<br>
 +
 +
<math> \,\ x(t) = \frac{5}{2} * e</math><sup>(<math>j*w_0*k_1*t</math>)</sup> <math> \,\ + \frac{5}{2} * e</math><sup>(<math>j*w_0*k_2*t</math>)</sup><math> - \frac{4}{5} * e</math><sup>(<math>j*w_0*k_3*t</math>)</sup> <math>+ \frac{4}{5} * e</math><sup>(<math>j*w_0*k_4*t</math>)</sup>

Revision as of 14:10, 25 September 2008

Periodic CT Signal and Its Fourier Coefficients

A Fourier Series of a periodic CT signal is such that:
$ x(t) = \sum_{n=-\infty}^\infty a_k * e $($ j*k*w_0*t $)

where

$ a_k = \frac{1}{T} \int_{0}^{T} x(t)* e $($ -j*k*w_0*t $)$ \,\ dt $

If our signal $ x(t) $ consists of only sine and cosine waves, we don't have to do all those complicated integrals in order to find the Fourier coefficients $ a_k $.


Take the signal $ x(t) = 5cos(2t) - 4sin(5t) $. The graph below proves that it is indeed periodic, with a period $ T = 2\pi $.

ECE301HW4p1 ECE301Fall2008mboutin.jpg


$ \,\ sin(x) = \frac{1}{2j} * (e $(jx) $ \,\ - e $(-jx)$ \,\ ) $

and

$ \,\ cos(x) = \frac{1}{2} * (e $(jx) $ \,\ + e $(-jx)$ \,\ ) $

Therefore,

$ x(t) = 5 * \frac{1}{2} * (e $(j2t) $ \,\ + e $(-j2t)$ \,\ ) - 4 * \frac{1}{5j} * (e $(j5t) $ \,\ - e $(-j5t)$ \,\ ) $


$ \,\ x(t) = \frac{5}{2} * e $(j2t) $ \,\ + \frac{5}{2} * e $(-j2t)$ - \frac{4}{5} * e $(j5t) $ + \frac{4}{5} * e $(-j5t)


The period $ \,\ T = 2\pi $ so if $ \,\ w_0 = \frac{2\pi}{T} $, then $ \,\ w_0 = 1 $.

Our new equation can now be rewritten as:

$ \,\ x(t) = \frac{5}{2} * e $($ j*w_0*k_1*t $) $ \,\ + \frac{5}{2} * e $($ j*w_0*k_2*t $)$ - \frac{4}{5} * e $($ j*w_0*k_3*t $) $ + \frac{4}{5} * e $($ j*w_0*k_4*t $)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood