Line 9: Line 9:
 
Let us look for the Fourier series coefficients for the DT signal <math>x[n] = cos(3\pi n)</math>
 
Let us look for the Fourier series coefficients for the DT signal <math>x[n] = cos(3\pi n)</math>
  
<math>x[n] = cos(5\pi n) = \frac{e^{j5\pi n}+e^{-j5\pi n}}{2} = \frac{1}{2}e^{j4\pi n}e^{j\pi n} + \frac{1}{2}e^{-j4\pi n}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{-j\pi n}</math>
+
<math>x[n] = cos(5\pi n) = \frac{e^{j5\pi n}+e^{-j5\pi n}}{2} = \frac{1}{2}e^{j4\pi n}e^{j\pi n} + \frac{1}{2}e^{-j4\pi n}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{j\pi n} </math>

Revision as of 17:26, 23 September 2008

For periodic DT signal, x[n] with fundamental period N:

$ x[n]=\displaystyle\sum_{k=0}^{n-1}a_ke^{jk\frac{2\pi}{N}n} $

The Fourier series coefficients can be calculated with:

$ a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n} $

Let us look for the Fourier series coefficients for the DT signal $ x[n] = cos(3\pi n) $

$ x[n] = cos(5\pi n) = \frac{e^{j5\pi n}+e^{-j5\pi n}}{2} = \frac{1}{2}e^{j4\pi n}e^{j\pi n} + \frac{1}{2}e^{-j4\pi n}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{j\pi n} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva