Line 7: Line 7:
 
<math>a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n}</math>
 
<math>a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n}</math>
  
Let us look for the Fourier series coefficients for the DT signal {\Large{<math>x[n] = cos(2\pi n)</math>}}
+
Let us look for the Fourier series coefficients for the DT signal <math>x[n] = cos(2\pi n)</math>

Revision as of 17:01, 23 September 2008

For periodic DT signal, x[n] with fundamental period N:

$ x[n]=\displaystyle\sum_{k=0}^{n-1}a_ke^{jk\frac{2\pi}{N}n} $

The Fourier series coefficients can be calculated with:

$ a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n} $

Let us look for the Fourier series coefficients for the DT signal $ x[n] = cos(2\pi n) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett