Line 33: Line 33:
 
<math>a_{1} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-j \frac{\pi}{2} n} = \frac{1}{4}[(0)(1)+(1)(0)+(2)(-1)+(1)(0)]</math>
 
<math>a_{1} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-j \frac{\pi}{2} n} = \frac{1}{4}[(0)(1)+(1)(0)+(2)(-1)+(1)(0)]</math>
  
<font size="3">
 
 
'''<math>a_{1} = -\frac{1}{2}</math>'''
 
'''<math>a_{1} = -\frac{1}{2}</math>'''
</font>
 

Revision as of 17:00, 23 September 2008

Periodic DT Signal

The following plot shows two periods of the periodic DT signal $ x[n] $, a sawtooth:

SawDTJP ECE301Fall2008mboutin.jpg

Fourier Series Coefficients

$ a_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk \frac{2 \pi}{N} n} $

From the plot above, N = 4:

$ a_{k} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-jk \frac{\pi}{2} n} $

and:

$ x[0] = 0 $

$ x[1] = 1 $

$ x[2] = 2 $

$ x[3] = 1 $

$ x[4] = 0 $

Therefore:

$ a_{0} = \frac{1}{4} \sum_{n=0}^{3} x[n] = \frac{1}{4}(0+1+2+1) $

$ a_{0} = 1 $

$ a_{1} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-j \frac{\pi}{2} n} = \frac{1}{4}[(0)(1)+(1)(0)+(2)(-1)+(1)(0)] $

$ a_{1} = -\frac{1}{2} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood