Line 13: Line 13:
 
and:
 
and:
  
<math>a[0] = 0
+
<math>x[0] = 0</math>
a[1] = 1
+
 
a[2] = 2
+
<math>x[1] = 1</math>
a[3] = 1
+
 
a[4] = 0</math>
+
<math>x[2] = 2</math>
 +
 
 +
<math>x[3] = 1</math>
 +
 
 +
<math>x[4] = 0</math>
  
 
Therefore:
 
Therefore:
  
 
<math>a_{0} = \frac{1}{4} \sum_{n=0}^{3} x[n]</math>
 
<math>a_{0} = \frac{1}{4} \sum_{n=0}^{3} x[n]</math>

Revision as of 16:49, 23 September 2008

Periodic DT Signal

The following plot shows two periods of the periodic DT signal $ x[n] $, a sawtooth:

SawDTJP ECE301Fall2008mboutin.jpg

Fourier Series Coefficients

$ a_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk \frac{2 \pi}{N} n} $

From the plot above, N = 4:

$ a_{k} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-jk \frac{\pi}{2} n} $

and:

$ x[0] = 0 $

$ x[1] = 1 $

$ x[2] = 2 $

$ x[3] = 1 $

$ x[4] = 0 $

Therefore:

$ a_{0} = \frac{1}{4} \sum_{n=0}^{3} x[n] $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang