(New page: == Define a DT LTI System ==)
 
Line 1: Line 1:
 
== Define a DT LTI System ==
 
== Define a DT LTI System ==
 +
Let the DT LTI system be:
 +
<math>y[n]=(2n-3)^nu[n-5]</math>
 +
 +
==Obtain the Unit Impulse Response h[n] and the System Function F[z] of the system==
 +
 +
First to obtain the unit impulse response h[n] we plug in <math>\delta{[n]}</math> into our y[n].
 +
 +
<math>h[n]=(2n-3)^n\delta{[n-5]}</math>

Revision as of 08:01, 25 September 2008

Define a DT LTI System

Let the DT LTI system be: $ y[n]=(2n-3)^nu[n-5] $

Obtain the Unit Impulse Response h[n] and the System Function F[z] of the system

First to obtain the unit impulse response h[n] we plug in $ \delta{[n]} $ into our y[n].

$ h[n]=(2n-3)^n\delta{[n-5]} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood