Line 14: Line 14:
  
 
<math>x(t) = (5+3j)cos(4t) + (1+2j)sin(3t)</math>
 
<math>x(t) = (5+3j)cos(4t) + (1+2j)sin(3t)</math>
 +
 +
 
<math> = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} + e^{-j3t}}{2j})</math>
 
<math> = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} + e^{-j3t}}{2j})</math>
 +
 +
<math> = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} + \frac{1+2j}{2j}e^{-3jt}</math>

Revision as of 14:04, 23 September 2008

The Formulas for Fourier Series

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

where $ a_k=\frac{1}{T} \int_0^Tx(t)e^{-jk\omega_ot}dt $

Chosen Formula

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $

Computation

First we want to compute the period (T) for this function. The period of sin and cos is 2pi, therefore the combined period is also 2pi.

Next we compute the coefficients. Since we are using sin and cos, we can use their equivalent formulas.

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $


$ = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} + e^{-j3t}}{2j}) $

$ = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} + \frac{1+2j}{2j}e^{-3jt} $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009