(CT LTI system)
(unit impulse response)
Line 5: Line 5:
 
==unit impulse response==
 
==unit impulse response==
 
Obtain the unit impulse response h(t) and the system function H(s) of your system. :
 
Obtain the unit impulse response h(t) and the system function H(s) of your system. :
:<math>d (t) => System =>10 d (t) \,</math>  
+
:<math>d (t) => System =>10 d (t) + d(t-1)\,</math>  
:<math>h(t)=10d(t) \,</math>
+
:<math>h(t)=10d(t) +d(t-1)\,</math>
 
:<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt</math>
 
:<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt</math>

Revision as of 05:44, 25 September 2008

CT LTI system

The system is:

$ y(t)=10x(t)+x(t-1) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ d (t) => System =>10 d (t) + d(t-1)\, $
$ h(t)=10d(t) +d(t-1)\, $
$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett