(New page: <font size="3">Let <math>x(t)=cos(t)</math>, then the steps to calculate its Fourier series coefficients are as follows:</font>)
 
Line 1: Line 1:
<font size="3">Let <math>x(t)=cos(t)</math>, then the steps to calculate its Fourier series coefficients are as follows:</font>
+
<font size="3">Let <math>x(t)=cos(4 \pi t) + sin(6 \pi t)</math>, then its Fourier series coefficients are as follows:
 +
 
 +
<math>x(t)=\frac{e^{4 \pi jt} + e^{-4 \pi jt}}{2} + \frac{e^{6 \pi jt} + e^{-6 \pi jt}}{2j}</math> and <math>\omega_{0} = \pi</math>
 +
 
 +
<math>a_{4} = a_{-4} = \frac{1}{2}</math>
 +
 
 +
<math>a_{6} = -a_{-6} = \frac{1}{2j}</math>
 +
 
 +
All other <math>a_{k}</math> values are 0
 +
</font>

Revision as of 11:36, 23 September 2008

Let $ x(t)=cos(4 \pi t) + sin(6 \pi t) $, then its Fourier series coefficients are as follows:

$ x(t)=\frac{e^{4 \pi jt} + e^{-4 \pi jt}}{2} + \frac{e^{6 \pi jt} + e^{-6 \pi jt}}{2j} $ and $ \omega_{0} = \pi $

$ a_{4} = a_{-4} = \frac{1}{2} $

$ a_{6} = -a_{-6} = \frac{1}{2j} $

All other $ a_{k} $ values are 0

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett