(DT Perodic function)
(DT Perodic function)
Line 1: Line 1:
==DT Perodic function==
+
==DT Periodic function==
  
 
Find the Fourier Series coefficients of x[n]
 
Find the Fourier Series coefficients of x[n]
 
:<math>x[n]=5cos(5/2\pi n +\pi) \, </math>
 
:<math>x[n]=5cos(5/2\pi n +\pi) \, </math>
:<math>N=\dfrac{2\pi}{5/2\pi}K </math>, where K is the smallest integer, that makes N an integer.
+
 
:<math> K = 5,N = 4\,</math>
+
:<math>x[n]=5cos(5/2 \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2 j \pi n-\pi})}{2} \,</math>
:<math>x[n]=5cos(5/2 j \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2\pi n-\pi})}{2} \,</math>
+
:<math>x[n]= \dfrac{5}{2}(e^{5/2 j \pi n}e^{\pi}-e^{-5/2 j \pi n}e^{-\pi}) \,</math>
:<math>x[n]= \dfrac{5}{2}(e^{5/2\pi n}e^{\pi}-e^{-5/2\pi n}e^{-\pi}) \,</math>
+
 
:<math>e^{\pi}=-1,e^{-\pi}=1 \,</math>
 
:<math>e^{\pi}=-1,e^{-\pi}=1 \,</math>
:<math>x[n]= \dfrac{5}{2}(e^{-5/2\pi n}-e^{5/2\pi n}) \,</math>
+
:<math>x[n]= \dfrac{5}{2}(e^{-5/2 j \pi n}-e^{5/2 j \pi n}) \,</math>
 +
:<math>x[n]= \dfrac{5}{2}(e^{-2 j \pi n}e^{-1/2 j \pi n}-e^{2 j \pi n}e^{1/2 j \pi n}) \,</math>
 +
:<math>x[n]= \dfrac{5}{2}(e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \,</math>
 +
 
 +
Note that,
 +
:<math> 1 = e^{2\pi} \,</math>
 +
:<math> e^{2\pi}*e^{-1/2\pi}=e^{3/2\pi}=e^{1/2\pi}e^(\pi)=-e^{1/2\pi} \,</math>
 +
:<math>x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \,</math>
 +
:<math>x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \,</math>
 +
:<math>x[n]= -5(e^{1/2 j \pi n}) \,</math>
 +
:<math>N=\dfrac{2\pi}{\pi/2}K </math>, where K is the smallest integer, that makes N an integer.
 +
:<math> K = 1,N = 4\,</math>
 +
 
 +
:<math>a1=1/4\sum_{k=0}^{N-1} -5(e^{1/2 j \pi n})e^{- j 2\pi/N n}
 +
 
 +
or
 +
:<math>x[0]=-1 \,</math>
 +
:<math>x[1]=0 \,</math>
 +
:<math>x[2]=1 \,</math>
 +
:<math>x[3]=0 \,</math>
 +
:<math>x[4]=-1 \,</math>
 +
a0=average of signal = 0

Revision as of 09:50, 23 September 2008

DT Periodic function

Find the Fourier Series coefficients of x[n]

$ x[n]=5cos(5/2\pi n +\pi) \, $
$ x[n]=5cos(5/2 \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2 j \pi n-\pi})}{2} \, $
$ x[n]= \dfrac{5}{2}(e^{5/2 j \pi n}e^{\pi}-e^{-5/2 j \pi n}e^{-\pi}) \, $
$ e^{\pi}=-1,e^{-\pi}=1 \, $
$ x[n]= \dfrac{5}{2}(e^{-5/2 j \pi n}-e^{5/2 j \pi n}) \, $
$ x[n]= \dfrac{5}{2}(e^{-2 j \pi n}e^{-1/2 j \pi n}-e^{2 j \pi n}e^{1/2 j \pi n}) \, $
$ x[n]= \dfrac{5}{2}(e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $

Note that,

$ 1 = e^{2\pi} \, $
$ e^{2\pi}*e^{-1/2\pi}=e^{3/2\pi}=e^{1/2\pi}e^(\pi)=-e^{1/2\pi} \, $
$ x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $
$ x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \, $
$ x[n]= -5(e^{1/2 j \pi n}) \, $
$ N=\dfrac{2\pi}{\pi/2}K $, where K is the smallest integer, that makes N an integer.
$ K = 1,N = 4\, $
$ a1=1/4\sum_{k=0}^{N-1} -5(e^{1/2 j \pi n})e^{- j 2\pi/N n} or :<math>x[0]=-1 \, $
$ x[1]=0 \, $
$ x[2]=1 \, $
$ x[3]=0 \, $
$ x[4]=-1 \, $

a0=average of signal = 0

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva