Line 19: Line 19:
 
<math> y(t) = \int_{-\infty}^{\infty} x(\tau) * h(\tau) *d\tau </math>
 
<math> y(t) = \int_{-\infty}^{\infty} x(\tau) * h(\tau) *d\tau </math>
  
<math> y(t) = \int_{-\infty}^{\infty} e^{-j*w(t-k)} * 2*\delta(\tau) </math>
+
<math> y(t) = \int_{-\infty}^{\infty} e^{-j*w(t-k)} * 2*\delta *d\tau </math>

Revision as of 15:58, 25 September 2008

CT LTI sytem

An example system would be:

y(t) = 2*x(t)


Part A: The unit impulse response and system function H(s)

The unit impulse response:

$ x(t) \to \delta(t) * h(t) = 2*\delta(t) $


The system function, H(s) derivation:

$ y(t) = \int_{-\infty}^{\infty} x(\tau) * h(\tau) *d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-j*w(t-k)} * 2*\delta *d\tau $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva