Line 18: | Line 18: | ||
<math> y(t) = \int_{-\infty}^{\infty} x(\tau) * h(\tau) *d\tau </math> | <math> y(t) = \int_{-\infty}^{\infty} x(\tau) * h(\tau) *d\tau </math> | ||
+ | |||
+ | <math> y(t) = \int_{-\infty}^{\infty} e^{-j*w(t-k)} * 2*\delta(\tau) </math> |
Revision as of 15:57, 25 September 2008
CT LTI sytem
An example system would be:
y(t) = 2*x(t)
Part A: The unit impulse response and system function H(s)
The unit impulse response:
$ x(t) \to \delta(t) * h(t) = 2*\delta(t) $
The system function, H(s) derivation:
$ y(t) = \int_{-\infty}^{\infty} x(\tau) * h(\tau) *d\tau $
$ y(t) = \int_{-\infty}^{\infty} e^{-j*w(t-k)} * 2*\delta(\tau) $