Line 21: Line 21:
  
 
K = 3
 
K = 3
 +
 
K= -1
 
K= -1
 +
 
K= 1
 
K= 1
 +
 
K= -3
 
K= -3
  
  
<math> a^{3} = \frac{1}{4} </math>   
+
<math> a^{3} = \frac{1}{4} </math>  
 +
   
 
<math> a^{-1} = \frac{1}{4} </math>
 
<math> a^{-1} = \frac{1}{4} </math>
 +
 
<math> a^{1} = \frac{1}{4} </math>
 
<math> a^{1} = \frac{1}{4} </math>
 +
 
<math> a^{-3} = \frac{1}{4} </math>
 
<math> a^{-3} = \frac{1}{4} </math>

Revision as of 16:40, 23 September 2008

Define a Periodic CT signal and compute its Fourier series coefficients

Consider the following CT signal:


x(t) such that

$ ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt $


$ x(t) = cos(2* \pi * t) * cos(4* \pi * t) $


$ = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} $


$ = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} $


K = 3

K= -1

K= 1

K= -3


$ a^{3} = \frac{1}{4} $

$ a^{-1} = \frac{1}{4} $

$ a^{1} = \frac{1}{4} $

$ a^{-3} = \frac{1}{4} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett