Line 8: Line 8:
 
<math> x(t) = cos(2* \pi * t) * cos(4* \pi * t) </math>
 
<math> x(t) = cos(2* \pi * t) * cos(4* \pi * t) </math>
  
<math> = \frac{e^{j*2*\pi*t} + e^(-j*2*\pi*t)}{2} </math>
+
<math> = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} </math>
 +
 
 +
<math> = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} </math>

Revision as of 16:31, 23 September 2008

Define a Periodic CT signal and compute its Fourier series coefficients

Consider the following CT signal:

x(t) such that

$ x(t) = cos(2* \pi * t) * cos(4* \pi * t) $

$ = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} $

$ = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison